# 'Full' DFPT calculation of third derivatives using Second Order Sternheimer equation # Test on AlAs, with PAW pseudopotentials # (L. Baguet, 05.2018) # This is the most demanding test of nonlinear: # PAW + nsppol=2 + nsym=1 + kptopt=3 + empty bands # However, tolwfr and the number of kpoints are reduced to limit the computation time, leading to crazy results # Enable output for nonlinear (full DFPT only) #***************************************************** # nonlinear_info 1 # print details of 3rd derivatives in .out file (no time consuming) # nonlinear_info 2 # nonlinear_info=1 + debug_mode activated in nonlinear (time consuming) # nonlinear_info 3 # nonlinear_info=1 + debug_mode activated in rf2_init (time consuming) # nonlinear_info 4 # nonlinear_info=1 + debug_mode activated in both nonlinear and rf2_init (time consuming) # Elementary cell #********************************* acell 3*10.64 rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 # Atoms #*********************** natom 2 ntypat 2 znucl 13 33 typat 1 2 xred 0.00 0.00 0.00 0.25 0.25 0.25 # Exchange correlation functional #******************************** ixc 7 # Polarization #******************************* nsppol 2 spinmagntarget 0 # SCF procedure #******************************* nstep 100 # Bands #******************************* occopt 1 nband 12 # Plane wave basis set #************************************** ecut 3.5 ecutsm 0 pawecutdg 7.0 # K point grid #************************************** ngkpt 2 2 2 nshiftk 1 shiftk 0.5 0.5 0.5 # The usual Monkhorst-Pack grid is not used in order to reduce the number of kpoints (and decrease the computation time) # nshiftk 4 # shiftk 0.5 0.5 0.5 # 0.5 0.0 0.0 # 0.0 0.5 0.0 # 0.0 0.0 0.5 # Number of Datasets #************************************** # ndtset 7 ndtset 3 jdtset 5 6 7 # PAW option #******************************* pawxcdev 0 # non-zero pawxcdev is not allowed for dataset 7, so we use pawxcdev=0 for all # Disable symmetries #************************************** nsym 1 # For all datasets (except 1 and 2) #******************************* kptopt 3 tolwfr 1.0d-18 getden 2 getwfk 2 # DATASET1 : Ground state (density) #******************************* # getden1 0 # getwfk1 0 # tolvrs1 1.0d-8 # kptopt1 1 # DATASET2 : Ground state (highly converged wavefunction) #******************************* # getden2 1 # getwfk2 1 # tolwfr2 1.0d-20 # DATASET3 : ddk (SCF cycles are useless) #******************************* # rfddk3 1 # rfdir3 1 1 1 # tolwfr3 1.0d-20 ## For a more effective non self-consistent computation: # nstep3 1 # nline3 100 # tolrde3 1.0d-30 # tolrde is choosen to be much lower than tolwfr. # This way the conjugate gradient steps stop at tolwfr, and not tolrde (usually around 1.0d-3). # If nline is sufficiently large, the computation converges in one step only. # DATASET4 : Phonons, Electric field #******************************* # rfelfd4 3 # rfphon4 1 # rfatpol4 1 2 # rfdir4 1 1 1 # getddk4 3 # prtden4 1 # prepanl4 1 # DATASET5 : dkdk #******************************* rf2_dkdk5 1 getddk5 3 prepanl5 1 tolwfr5 1.0d-20 # Non self-consistent computation : can converge in one step. If not, increase nline instead of nstep. tolrde is not used. nstep5 1 nline5 100 # DATASET6 : dkde #******************************* rf2_dkde6 1 getddk6 3 get1den6 4 getdelfd6 4 getdkdk6 5 prepanl6 1 tolwfr6 1.0d-18 # Non self-consistent computation : can converge in one step. If not, increase nline instead of nstep. tolrde is not used. nstep6 1 nline6 100 # DATASET7 : 3DTE calculation (full DFPT) #***************************************** optdriver7 5 # for nonlinear calculation usepead7 0 getddk7 3 get1den7 4 get1wf7 4 getdkde7 6 d3e_pert1_phon7 1 d3e_pert1_atpol7 1 2 d3e_pert1_elfd7 1 d3e_pert1_dir7 1 1 1 d3e_pert2_elfd7 1 d3e_pert2_dir7 1 1 1 d3e_pert3_elfd7 1 d3e_pert3_dir7 1 1 1 pp_dirpath "$ABI_PSPDIR" pseudos "Pseudodojo_paw_pw_standard/Al.xml, As.LDA_PW-JTH_sp.xml" #%% #%% [setup] #%% executable = abinit #%% test_chain = t87.in, t88.in, t89.in #%% [shell] #%% post_commands = #%% ww_mv t88o_DS2_DEN t89o_DS2_DEN; #%% ww_mv t88o_DS2_WFK t89o_DS2_WFK; #%% ww_mv t88o_DS3_1WF7 t89o_DS3_1WF7; #%% ww_mv t88o_DS3_1WF8 t89o_DS3_1WF8; #%% ww_mv t88o_DS3_1WF9 t89o_DS3_1WF9; #%% ww_mv t88o_DS4_DEN1 t89o_DS4_DEN1; #%% ww_mv t88o_DS4_DEN2 t89o_DS4_DEN2; #%% ww_mv t88o_DS4_DEN3 t89o_DS4_DEN3; #%% ww_mv t88o_DS4_DEN4 t89o_DS4_DEN4; #%% ww_mv t88o_DS4_DEN5 t89o_DS4_DEN5; #%% ww_mv t88o_DS4_DEN6 t89o_DS4_DEN6; #%% ww_mv t88o_DS4_DEN10 t89o_DS4_DEN10; #%% ww_mv t88o_DS4_DEN11 t89o_DS4_DEN11; #%% ww_mv t88o_DS4_DEN12 t89o_DS4_DEN12; #%% ww_mv t88o_DS4_1WF1 t89o_DS4_1WF1; #%% ww_mv t88o_DS4_1WF2 t89o_DS4_1WF2; #%% ww_mv t88o_DS4_1WF3 t89o_DS4_1WF3; #%% ww_mv t88o_DS4_1WF4 t89o_DS4_1WF4; #%% ww_mv t88o_DS4_1WF5 t89o_DS4_1WF5; #%% ww_mv t88o_DS4_1WF6 t89o_DS4_1WF6; #%% ww_mv t88o_DS4_1WF10 t89o_DS4_1WF10; #%% ww_mv t88o_DS4_1WF11 t89o_DS4_1WF11; #%% ww_mv t88o_DS4_1WF12 t89o_DS4_1WF12 #%% [files] #%% files_to_test = #%% t88.out, tolnlines =0 , tolabs =1.0E-8, tolrel = 1.0E-8, fld_options = -medium; #%% [paral_info] #%% max_nprocs = 10 #%% [extra_info] #%% authors = L. Baguet #%% keywords = PAW, DFPT, NONLINEAR #%% description = #%% 'Full' DFPT computation of third derivatives in Nonlinear (dataset 7). #%% Preceded by resolution of Second-order Sternheimer equations (dataset 5 and 6). #%% Give same results than t84.in if tolwfr is increased and the Monkhorst-Pack k-grid is used. #%%