# N2 system. # Excited state computation, using LDA/TDLDA # with different XC kernels ndtset 4 #DATASET 1 SCF nband1 5 prtden1 1 getden1 0 getwfk1 0 tolwfr1 1.0d-15 #DATASET 2 TDDFT getden2 1 tolwfr2 1.0d-9 iscf2 -1 getwfk2 1 nband2 12 #DATASET 3 SCF with another ixc nband3 5 prtden3 1 getwfk3 1 tolwfr3 1.0d-15 ixc3 7 #DATASET 4 TDDFT getden4 3 tolwfr4 1.0d-9 iscf4 -1 getwfk4 3 nband4 12 ixc4 7 #Common acell 6 2*5 Angstrom boxcenter 3*0.0d0 diemac 1.0d0 diemix 0.5d0 ecut 25 ixc 1 kptopt 0 natom 2 nbdbuf 0 nstep 25 ntypat 1 typat 1 1 xcart -0.54885 0 0 0.54885 0 0 Angstrom ! Distance 1.0977 Angstrom znucl 7 pp_dirpath "$ABI_PSPDIR" pseudos "PseudosHGH_pwteter/7n.5.hgh" #%% #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% t55.out, tolnlines = 10, tolabs = 1.000e-02, tolrel = 4.000e-01 #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% N2 molecule non-spin-polarized, in a big box. #%% Compute excitation energies, as well as Cauchy #%% coefficients. The Cauchy (-2) coefficient #%% is the low-frequency optical polarisability. #%% The present test uses a small box (6x5x5 Angstrom), #%% a small energy cut-off (25 Ha), and only #%% 12 states. Two different exchange-correlation #%% functionals are treated : ixc=1 (Teter93), #%% and ixc=7 (PW92). #%% Experimental values are taken from Goerling at al, #%% J. Chem. Phys. 110, 2785 (1999)). #%% Experimental values for the singlet excitation #%% energies are : #%% 1pi_g 9.31eV 1sig_u- 9.92eV 1del_u 10.27eV #%% The present test gives #%% 1pi_g 9.47eV 1sig_u- 9.91eV 1del_u 10.45eV #%% With a larger box (8x7x7) #%% 1pi_g 9.33eV 1sig_u- 9.84eV 1del_u 10.38eV #%% With a larger cutoff (60Ha) #%% 1pi_g 9.38eV 1sig_u- 9.77eV 1del_u 10.31eV #%% With a larger number of states (30) #%% 1pi_g 9.44eV 1sig_u- 9.91eV 1del_u 10.45eV #%% Experimental values for the Cauchy coefficients are: #%% (These values should be updated, the real ones #%% are smaller by a few percent, because a #%% buffer has been introduced in tddft.f) #%% (-2) 11.74au, (-4) 30.11au, (-6) 101.8au #%% The present test gives #%% (-2) 8.012au, (-4) 27.83au, (-6) 108.4au #%% With a larger box (8x7x7) #%% (-2) 7.112au, (-4) 25.51au, (-6) 102.2au #%% With a larger cutoff (60Ha) #%% (-2) 7.717au, (-4) 26.87au, (-6) 104.6au #%% With a larger number of states (30) #%% (-2) 11.70au, (-4) 34.56au, (-6) 123.3au #%% (The larger number of states is important to give #%% reasonable values ...) #%% Experimental values for the triplet excitation #%% energies are : #%% 3pi_g 7.75eV 3sig_u+ 8.04eV 3del_u 8.88eV 3sig_u- 9.67eV 3pi_u 11.19eV #%% The present test gives #%% 3pi_g 7.83eV 3sig_u+ 8.11eV 3del_u 9.06eV 3sig_u- 9.91eV 3pi_u 10.91eV #%% With a larger box (8x7x7) #%% 3pi_g 7.70eV 3sig_u+ 8.13eV 3del_u 9.04eV 3sig_u- 9.85eV 3pi_u 10.71eV #%% With a larger cutoff (60Ha) #%% 3pi_g 7.73eV 3sig_u+ 7.88eV 3del_u 8.88eV 3sig_u- 9.77eV 3pi_u 10.44eV #%% With a larger number of states (30) #%% 3pi_g 7.83eV 3sig_u+ 8.04eV 3del_u 9.04eV 3sig_u- 9.91eV 3pi_u 10.90eV #%% Note that the use of the PW92 functional instead of the #%% Teter93 functional does not affect the singlet values, #%% but have some effects on the triplet values: #%% they change from #%% 3pi_g 7.83eV 3sig_u+ 8.11eV 3del_u 9.06eV 3sig_u- 9.91eV 3pi_u 10.91eV #%% to #%% 3pi_g 7.85eV 3sig_u+ 8.16eV 3del_u 9.08eV 3sig_u- 9.91eV 3pi_u 10.93eV #%% In the Goerling paper, still another functional was used, #%% the Vosko-Wilk-Nussair one, #%% whose spin dependence is not very accurate, hence the large #%% differences for the triplet states. #%% When this functional will be coded in ABINIT, it will be #%% worth to complete the present test. #%% topics = TDDFT #%%