# Hydrogen diatomic molecule : computation of derivatives # of the energy, to a very high accuracy. # Here, test the treatment of occupation numbers that differ from 2.0d0 # Dataset 1 : GS computation # Dataset 2 : RF calculation ndtset 2 #Specific for RF rfphon2 1 rfatpol2 2 2 rfdir2 1 0 0 # nline2 6 # nnsclo2 3 nqpt2 1 # nstep2 1 qpt2 0.0 0.0 0.0 diemix2 0.35 diemac2 1.0 #Common data acell 12 10 10 amu 1.008 diemac 1.0d0 diemix 0.5d0 ecut 4.5 getwfk -1 kptopt 0 kpt 3*0.0 natom 2 nband 2 nkpt 1 nline 3 nstep 20 nsym 4 ntypat 1 occopt 1 rprim 1 0 0 0 1 0 0 0 1 symrel 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 tnons 12*0 tolvrs 1.0d-15 typat 2*1 wtk 1 xred -0.047 0 0 0.047 0 0 znucl 1.0 pp_dirpath "$ABI_PSPDIR" pseudos "PseudosTM_pwteter/1h.pspnc" #%% #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% t34.out, tolnlines = 0, tolabs = 0.000e+00, tolrel = 0.000e+00 #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% keywords = NC, DFPT #%% authors = Unknown #%% description = #%% Again H2 molecule in a big box (like test 33). #%% With the same configuration and parameters as test 33, #%% investigate the treatment of unoccupied states : #%% use nband 2 and occopt 1 , causing occ 2.0 1.0 . The same results #%% as with test 33 are obtained. #%%